Tracing back one of the ingredients of life
Mosaic of comet 67P/Churyumov–Gerasimenko, created using images taken on 10 September 2014 when ESA’s Rosetta spacecraft was 27.8 km from the comet.

Tracing back one of the ingredients of life

Read time: 4 minutes

If you bake a cake, you need all kinds of ingredients, like flour, butter, sugar and eggs. You can’t make something from nothing! Likewise, when life first emerged on our planet, it needed its own ingredients. Some of those, like carbon and oxygen, are readily available in the universe. But for other ingredients of life, it’s not so clear where they come from. One of those ingredients is phosphorous.

Phosphorous is an important part of DNA – the fundamental molecule of all living organisms. Every single cell in your body contains countless DNA molecules, and they all contain phosphorous. But where did the phosphorous come from, and how did it arrive here on Earth?

Using observations of ALMA and of the European space probe Rosetta, astronomers are now beginning to find the answer to that question. In a sense, they have traced back the history of the phosphorous in our bodies.

Phosphorous is produced by nuclear reactions in the interiors of stars. At the end of their lives, stars shed their outer layers, or they explode altogether. As a result, the phosphorous atoms are blown into space. ALMA has now discovered that they can team up with oxygen atoms to form molecules of phosphorous monoxide.

According to the observations of ALMA, these molecules form under the influence of energetic radiation and shock waves from young, massive stars. These stars blow out empty regions in the surrounding clouds of gas and dust. The phosphorous monoxide molecules form preferentially on the inner walls of these empty regions.

ALMA also revealed that phosphorous monoxide is the most abundant phosphorous-bearing molecule in the universe. So how did it finally arrive on Earth? That’s where the observations of Rosetta came in. The European spacecraft carried out close-up studies of a comet in our own solar system.

Comets are the icy building blocks of planets. Rosetta discovered that the nucleus of comet 67P contains molecules of phosphorous monoxide. Apparently, when the Sun was born, these molecules became trapped in the first, frozen clumps of matter that formed in the outer parts of the surrounding disk.

So here’s the story. Phosphorous monoxide molecules form in interstellar space, in the neighborhood of massive stars. They become part of the clouds of gas and dust that give birth to stars like our own Sun. These stars are surrounded by flat, rotating disks from which planets are eventually born. The phosphorous monoxide molecules get trapped in icy comets that clump together in the outer parts of these disks.

Finally, when comets crash into newborn planets, the phosphorous ends up on those planets, including on our own Earth. There, it is available as an ingredient for living organisms like you and me!


ALMA studied the distribution of phosphorous-bearing molecules in a nebula known as AFGL5142. In this huge cloud of gas and dust, new massive stars are forming. ALMA found two phosphorous-bearing molecules: phosphorous monoxide (abbreviated as PO) and phosphorous nitride (PN). PO molecules turned out to be the most abundant. The European Space Agency’s Rosetta spacecraft visited a comet known as 67P/Churyumov-Gerasimenko (named after its two discoverers) and used its ROSINA instrument to study the composition of the comet. 67P also turned out to contain phosphorous monoxide molecules. If the same is true for comets in general, cometary impacts may have seeded the Earth with phosphorous, one of the building blocks of life.


The study of phosphorous-bearing molecules in space and in comets was carried out by a large international team of astronomers and space scientists, led by Victor Rivilla of the Arcetri Asstrophysical Observatory in Italy and Kathrin Altwegg of the University of Bern in Switzerland. Victor and Kathrin worked together with eleven colleagues from many European countries, and with the science team that operated the ROSINA instrument on the Rosetta spacecraft. The team published their results in the Monthly Notices of the Royal Astronomical Society.

Check this in ALMA site